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BAD REDUCTION OF GENUS THREE CURVES WITH COMPLEX

MULTIPLICATION

IRENE BOUW, JENNY COOLEY, KRISTIN LAUTER, ELISA LORENZO GARCIA, MICHELLE
MANES, RACHEL NEWTON, EKIN OZMAN

Abstract. Let C be a smooth, absolutely irreducible genus 3 curve over a number field
M . Suppose that the Jacobian of C has complex multiplication by a sextic CM-field K.
Suppose further that K contains no imaginary quadratic subfield. We give a bound on the
primes p of M such that the stable reduction of C at p contains three irreducible components
of genus 1.

1. Introduction

In [GL07], Goren and Lauter study genus 2 curves whose Jacobians are absolutely simple
and have complex multiplication (CM) by the ring of integers OK of a quartic CM-field K,
and they show that if such a curve has bad reduction to characteristic p then there is a
solution to the embedding problem, formulated as follows [GL07]:

Let K be a quartic CM-field which does not contain a proper CM-subfield, and let p be
a prime. The embedding problem concerns finding a ring embedding ι ∶ OK ↪ End(E1 ×
E2), such that the Rosati involution coming from the product polarization induces complex
conjugation on OK , and E1,E2 are supersingular elliptic curves over Fp.

In this paper, we consider genus 3 curves whose Jacobians have CM by a sextic CM-field
that does not contain a proper CM-subfield. By analogy with [GL07], we formulate an
embedding problem for the genus 3 case as follows.

Problem 6.3 (The embedding problem) Let O be an order in a sextic CM-field K, and let
p be a prime number. The embedding problem for O and p is the problem of finding elliptic
curves E1,E2,E3 defined over Fp, and a ring embedding

i ∶ O ↪ End(E1 ×E2 ×E3)
such that the Rosati involution on End(E1 × E2 × E3) induces complex conjugation on O.
We call such a ring embedding a solution to the embedding problem for O and p.

In this paper, we prove the following result on solutions to the embedding problem. We
refer to Section 6.3 for the precise statement.

Theorem 6.9 Let K be a sextic CM-field such that K does not contain a proper CM-subfield.
Let O be an order in K. There exists an explicit bound on the rational primes p for which
the embedding problem has a solution, and this bound depends only on the order O.
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As in the genus 2 case, Theorem 6.9 yields a bound on certain primes of bad reduction
for the curve C. However, the result is not as strong as in the genus 2 case, since there are
more possibilities for the reduction of C. We discuss the statement of the result.

Let C be a smooth, absolutely irreducible genus 3 curve over a number field M whose
Jacobian has CM by an order O in a sextic CM-field K. We say that C has bad reduction at
a rational prime p if there exists a prime p of M above p at which C has bad reduction. In
Corollary 4.3, we observe that if C has bad reduction at a prime p, there are two possibilities
for the stable reduction Cp of C at p. Either Cp contains three irreducible components of

genus 1, or Cp contains one irreducible component of genus 1 and one of genus 2.
In this paper, we restrict our attention to the first of these two possibilities. In Proposition

6.5, we show that if C has bad reduction at a prime p above p and the stable reduction
contains three genus 1 curves, then the embedding problem for O and p has a solution.
Theorem 6.9 therefore yields the following result on the primes of bad reduction of C.

Theorem 6.8 Let C be a genus 3 curve whose Jacobian has CM by an order O in a sextic
CM-field K that does not contain a proper CM-subfield. There exists an explicit bound on
the primes p where the stable reduction contains three irreducible components of genus 1.

We do not consider all primes of bad reduction of C in Theorem 6.8 for the following
reason. If the stable reduction of C at p contains three irreducible components of genus 1,
then the reduction Jp of the Jacobian J of C is isomorphic to the product E1 ×E2 ×E3 of
elliptic curves as polarized abelian varieties (Proposition 4.2). This yields a ring embedding

ι ∶ O = End(J) ↪ End(Jp) = End(E1 ×E2 ×E3),
which has the property that the Rosati involution on End(E1 ×E2 ×E3) restricts to complex
conjugation on the image of O (Section 4.3). This is precisely the statement that ι is a
solution to the embedding problem for O and p.

Consider a prime p where the curve C has bad reduction, but the stable reduction Cp

contains an irreducible component E of genus 1 and an irreducible component D of genus
2 (Corollary 4.3). In this case — an example of which is described in Section 5.2 — the
reduction Jp of the Jacobian of C is the product of E with the Jacobian of D as polarized

abelian varieties. The abelian variety Jp is still isogenous to a product of elliptic curves

(Theorem 4.5), but Jp is not isomorphic to a product of elliptic curves as polarized abelian
varieties. This suggests that a different formulation of the embedding problem would be
needed to draw conclusions for such primes p. We do not discuss the correct formulation
of the embedding problem for this case in the present paper, but leave it as a direction for
future work.

The assumption that the CM-field K does not contain a proper CM-field is also present
in the genus 2 case in [GL07]. However, in the genus 2 case, this assumption is equivalent
to the assumption that the CM-type of the Jacobian J is primitive. We refer to Section 3.4
for more details. In characteristic zero, the condition that the CM-type corresponding to J
is primitive is equivalent to the assumption that J is absolutely simple (Theorem 3.2).

In the genus 3 case, the assumption that the CM-field K does not contain a proper CM-
subfield still implies that the CM-type of the Jacobian J is primitive. However, the converse
does not hold. Even in the case that the sextic CM-field K contains a proper CM-subfield
there exist primitive CM-types (Section 3). In Section 6.4, we discuss why the embedding
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problem needs to be formulated differently for such CM-fields. We show that, in the case
where K contains a proper CM-subfield, the embedding problem as we have formulated it
has solutions for any prime p and some order O of K.

Finally, we have not included the condition that the elliptic curves Ei are supersingular in
the formulation of the embedding problem, in contrast to the formulation in genus 2, because
for a set of Dirichlet density 1/2, the elliptic curves Ei are ordinary.

1.1. Relation to a result of Gross and Zagier. One of the motivations of Goren and
Lauter for studying solutions of the embedding problem in genus 2 was generalizing a result
of Gross and Zagier on singular moduli of elliptic curves [GZ85]. Recall that singular moduli
are values j(τ) of the modular function j at imaginary quadratic numbers τ . Gross and
Zagier define the product

J(d1, d2) =
⎛
⎝ ∏[τ1],[τ2]

(j(τ1) − j(τ2))
⎞
⎠

4/w1w2

,

where the product runs over equivalence classes of imaginary quadratic numbers τi with
discriminants di, where the di are assumed to be relatively prime. Here wi denotes the
number of units in Q(τi). The function J is closely related to the value of the Hilbert
class polynomial of an imaginary quadratic field at a point τ corresponding to a different
imaginary quadratic field.

Under some assumptions, Gross and Zagier show that J(d1, d2) is an integer, and their
main result gives a formula for the factorization of this integer. The result of Gross and Zagier
may be reinterpreted as a formula for the number of isomorphisms between the reductions
of the elliptic curves Ei corresponding to the τi at all rational primes p. This problem is
equivalent to counting embeddings of End(E2) into the endomorphism ring of the reduction
of E1 at p.

Goren and Lauter ([GL07], Corollary 5.1.3) prove a generalization of the result of Gross
and Zagier. They consider curves of genus 2 with CM by a quartic CM-field. In their
result, the function J is replaced by suitable Siegel modular functions f/Θk. Here f is a
Siegel modular form of weight 10k with values in a number field and Θ is a concrete Siegel
modular form of weight 10. The modular function f/Θk has the property that for any τ in
the Siegel upper half plane the genus 2 curve corresponding to τ has bad reduction at the
primes dividing the denominator of (f/Θk)(τ). (See [GL07], Corollary 5.1.2 for the precise
statement.)

The Igusa class polynomials are an analog of the Hilbert class polynomials for quartic
CM-fields, where the j-invariant is replaced by the absolute Igusa invariants. Goren and
Lauter and collaborators (see for example [GL07], [GL13], [LV12]) deduce results on the
denominators of the coefficients of the Igusa class polynomials from results on the embedding
problem for quartic CM-fields.

The embedding problem for curves of genus 3 studied in this paper does not immediately
yield a statement analogous to that of Gross and Zagier. One of the ingredients that is
missing is finding good coordinates for the moduli space of curves of genus 3, analogous to
the absolute Igusa invariants in genus 2.

In this paper, we discuss several differences between the reduction of CM-curves in genus
2 and in genus 3. The embedding problem in the formulation of Problem 6.3 does not cover
all types of bad reduction. Also, in the case that the sextic CM-field K contains a proper
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CM-subfield the embedding problem should be adapted. It would be interesting to study
the implication of these differences for a possible analog of the Igusa class polynomials for
sextic CM-fields.

1.2. Outline. The structure of this paper is as follows. Section 2 gives the possibilities for
the Galois group of the Galois closure of a sextic CM-field, following work of Dodson in
[Dod84]. Section 3 describes the possible CM-types for a sextic CM-field. We note which of
the CM-types are primitive, meaning that they can arise as the CM-type of a simple abelian
variety. In Section 4, we describe the possibilities for the reduction of a genus 3 curve and
its Jacobian to characteristic p > 0. We also give some properties of the Rosati involution
attached to a polarized abelian variety, which will be used in Section 6. In Section 5, we give
various examples of genus 3 curves with CM; we calculate their CM-types and the reductions
of the curves and their Jacobians to characteristic p > 0. In Section 6, we consider a genus 3
curve C over a number field M such that its Jacobian has CM by a sextic CM-field K with
no proper CM-subfield. We prove a bound on primes such that there exists a solution to the
embedding problem, and we use that to give a bound on the primes p such that the stable
reduction of C at p contains three elliptic curves. We show that if we drop the assumption
that K has no proper CM-subfield, then the embedding problem as stated cannot be used
to give a bound on the primes p as above.

We include as an appendix a collection of conditions that a solution to the embedding
problem must satisfy, written as equations in the entries of certain matrices in the image
of the embedding. These equations may be useful for future work. A refinement of the
embedding problem (for example, a version which includes conditions pertaining to the CM-
type) would result in extra equations in addition to those in the appendix. It is to be hoped
that studying this larger set of equations would yield an explicit bound on the primes for
which they have a solution. This would give a bound on the primes p such that the stable
reduction of C at p contains three curves of genus 1, even in the case where the CM-field K
contains a proper CM-subfield.

1.3. Notation and conventions. We set the following notation, to be used throughout.

● Fp is the finite field with p elements.
● ζN is a primitive Nth root of unity.
● For a field k, k is an algebraic closure.
● K is a sextic CM-field, i.e., K is a totally imaginary extension of K+, where K+ is a
totally real cubic extension of Q.
● O is an order of K.
● F and L are Galois closures of K/Q and K+/Q respectively, with G = Gal(F /Q) and
G+ = Gal(L/Q).
● ψ is a complex embedding K ↪ C, and ρ is complex conjugation. Hence {ψ,ρ ○ψ} is
a conjugate pair of embeddings.
● (K,ϕ) is a CM-type, i.e., a choice of one embedding from each pair of complex
conjugate embeddings.
● A is an abelian variety, End(A) is the endomorphism ring of A, and End0(A) is
End(A) ⊗Q.
● For f ∈ End(A), f∨ ∈ End(A∨) is the dual isogeny. The Rosati involution associated
with a fixed polarization is denoted by f ↦ f∗, End0(A)→ End0(A).
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● E is an elliptic curve, j(E) is the j-invariant of E.
● We denote an isomorphism between two abelian varieties over an algebraic closure of
the field of definition by ≃.
● We denote an isogeny between two abelian varieties over an algebraic closure of the
field of definition by ∼.
● M is a number field, ν (or p) is a finite place of M , Oν is the valuation ring of ν, and
kν is the residue field.
● C is a curve over a number field with Jacobian J and genus g = g(C). A curve C is
always assumed to be smooth, projective and absolutely irreducible, unless explicitly
mentioned otherwise.
● Bp,∞ is the quaternion algebra ramified at p and ∞, and R is a maximal order of
Bp,∞.
● For a matrix T , Tr(T ) denotes the sum of its diagonal entries, the trace.
● TrK/K1

denotes the trace of a field extension K/K1.
● For an element of a central simple algebra, Nrd denotes the reduced norm.
● NmK/K1

denotes the norm of a field extension K/K1; we use Nm when the extension
is clear.

Acknowledgments. The authors would like to thank the Centre International de Rencon-
tres Mathématiques in Luminy for sponsoring the Women in Numbers - Europe (Femmes en
nombre) workshop and for providing a productive and enjoyable environment for our initial
work on this project. We would especially like to thank the organizers of WINE, Marie José
Bertin, Alina Bucur, Brooke Feigon, and Leila Schneps for making the conference and this
collaboration possible. We also thank the referee for the detailed and helpful report.

2. The Galois group of the Galois closure of a sextic CM-field

Let K be a sextic CM-field, i.e., K is a totally imaginary quadratic extension of a totally
real field K+ with [K+ ∶ Q] = 3. We denote the Galois closure of K+/Q by L and the
Galois closure of K/Q by F . We write G = Gal(F /Q) and G+ = Gal(L/Q). The following
proposition lists the possibilities for G.

Proposition 2.1. Let K be a sextic CM-field, and let G be the Galois group of the Galois
closure of K/Q. Then G is one of the following groups:

(1) C2 ×C3 ≃ C6,
(2) C2 × S3 ≃ D12,
(3) (C2)3 ⋊G+ with G+ ∈ {C3, S3} acting by permutations on the three copies of C2.

In particular, if K/Q is Galois, then the Galois group G = Gal(K/Q) ≃ C6 is cyclic.

Proof. This is proved in Section 5.1.1 of [Dod84], for example. �

In the rest of this section, we sketch the proof of Proposition 2.1, following Dodson. Since
we restrict to the case of sextic CM-fields, the presentation can be simplified. In the course
of the proof, we also give more details on the structure of the extensions F /Q and K+/Q in
the different cases. In particular, we show that Case 3 is precisely the case where K does
not contain an imaginary quadratic subfield.

Galois theory implies that we have the following exact sequence of groups:

1→ Gal(F /L)→ G→ G+ → 1.
5



Lemma 2.2. We have

Gal(F /L) ≃ (C2)v, 1 ≤ v ≤ 3
and

G+ ∈ {C3, S3}.
Proof. This lemma is a special case of the proposition in Section 1.1 of [Dod84]. We give the
proof here for convenience.

We first remark that K =K+(√−δ) for some totally positive square-free δ ∈K+. We write
δ1 ∶= δ, δ2, . . . , δr for the G+-conjugates of δ. It follows that

F = L(√−δ1, . . . ,√−δr).
Every element h ∈ Gal(F /L) sends √−δi to ±√−δi. Moreover, h is determined by its action
on these elements. It follows that Gal(F /L) ≃ (C2)v is an elementary abelian 2-group.

Since δ ∈ K+ it follows that [Q(δ) ∶ Q] divides 3. We conclude that the number of G+-
conjugates of δ is at most 3.

The statement on G+ immediately follows from the fact that [K+ ∶ Q] = 3. This proves
the lemma. �

Proof of Proposition 2.1. We start the classification. Note that Gal(K/K+) is generated by
complex conjugation. It follows that complex conjugation is also an element of G. This
element, which we denote by ρ, is an element of the center of G.

Case I: K/Q Galois.
Since K/Q is Galois, G = Gal(K/Q) is a group of order 6, hence either cyclic or S3. Since

the Galois closure L of K+/Q is a totally real subfield of K, it follows that K+ = L. This
implies that Gal(K/K+) is a normal subgroup of G which has order 2. It follows that G ≃ C6

is cyclic. Note that K contains the imaginary quadratic subfield K1 ∶=KC3 and K =K1K+.
This corresponds to Case 1 of Proposition 2.1.

Case II: K/Q is not Galois and K contains an imaginary quadratic field K1.
Since K contains an imaginary quadratic field K1, we have F = LK1 and G ≃ C2 ×G+. If

G+ ≃ C3, then L =K+ and K/Q is Galois, which contradicts our assumption. It follows that
G+ ≃ S3 and G ≃ C2 × S3. This is Case 2 of Proposition 2.1. We obtain the field diagram in
Figure 1.

Case III: K/Q is not Galois and K does not contain an imaginary quadratic subfield.
This case corresponds to Case 3 of Proposition 2.1. In this case the integer v from Lemma

2.2 is not equal to 1, i.e., we have v = 2 or 3. The following claim completes the proof of
Proposition 2.1.

Claim: The case v = 2 does not occur. This claim is a special case of the second proposition
in Section 5.1.1 of [Dod84]. We give the proof here for completeness.

Recall that ρ ∈ Gal(F /L) denotes complex conjugation and is contained in the center of
G. Let σ ∈ G+ be an element of order 3. Then σ acts on Gal(F /L) = (C2)v by conjugation.
This action has two orbits of length 1, corresponding to the identity element and ρ. All
other orbits have length 3. It follows that 3 ∣ (2v − 2). The claim follows. �
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Q

K1

K+

K

L

F = LK1

3

2

2

2

Figure 1. Field extensions in Case 2

Of primary interest to us in the rest of this paper is Case 3 of Proposition 2.1, in which
K does not contain an imaginary quadratic subfield. We have see that G ≃ (C2)3 ⋊G+ with
G+ ∈ {C3, S3}. The following diagram describes the field extensions in Case 3.

Q

K+

K

F

L

3

2

23

Figure 2. Field extensions in Case 3

3. Primitive CM-types

Let K be a sextic CM-field. As in Section 2, we write K+ for the totally real cubic subfield
of K. The complex embeddings K ↪ C come in pairs {ψ,ρ ○ ψ}, where ρ denotes complex
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conjugation. Recall that a CM-type (K,ϕ) is a choice of one embedding from each of these
pairs. The goal of this section is to determine the primitive CM-types. We start by recalling
the definition from [Mil06], Section 1.1. For examples we refer to Section 5.

Definition 3.1. Let (K,ϕ) and (K1, ϕ1) be CM-types. We say that (K,ϕ) is induced from(K1, ϕ1) if K1 is a subfield of K and the restriction of ϕ to K1 coincides with ϕ1. A CM-type
is called primitive if it is not induced from a CM-type on any proper CM-subfield of K.

Let A be an abelian variety and let K be a CM-field with [K ∶ Q] = 2dim(A). We say that
A has complex multiplication (CM) byK if the endomorphism algebra End0(A) = End(A)⊗Q
contains K. We say that a curve C has CM by K if its Jacobian has CM by K. We say that
A (or C) has CM if there exists a CM-field K such that A (or C) has CM by K. If End(A)
is an order O in a CM-field K with [K ∶ Q] = 2dim(A), we say that A has CM by O.

The following theorem gives a geometric interpretation of what it means for the CM-type
of a CM-abelian variety to be primitive in characteristic zero. For convenience, we say that
an abelian variety A defined over a field M is simple if it is absolutely simple, meaning that
A⊗M M is not isogenous to a product of abelian varieties of lower dimension. Similarly, we
say that two abelian varieties A1,A2 defined over M are isogenous if there exists an isogeny
ϕ ∶ A1 → A2 defined over the algebraic closure of M .

Theorem 3.2. Let A be an abelian variety defined over a field of characteristic zero. Suppose
that A has CM with CM-type (K,ϕ). Then the CM-type (K,ϕ) is primitive if and only if
the abelian variety A is simple.

Proof. This is proved in Theorem 3.5 of Chapter 1 of [Lan83]. See also Remark 1.5.4.2 of
[CCO14]. �

We refer to Section 1.5.5 of [CCO14] for an explanation of why we need to assume that A
is defined over a field of characteristic zero in Theorem 3.2.

The following result gives a useful criterion for determining whether a given CM-type is
primitive. For a proof, we refer to Theorem 3.6 of Chapter 1 of [Lan83]. For a CM-type(K,ϕ) and h ∈ Aut(K), we write

ϕh = {ϕi ○ h ∣ ϕi ∈ ϕ}.
Proposition 3.3. Let (K,ϕ) be a CM-type. We write (F,Φ) for the induced CM-type of
the Galois closure of K/Q. Let

HΦ = {h ∈ G = Gal(F /Q) ∣ Φh = Φ}.
Then (K,ϕ) is primitive if and only if

K = FHΦ.

We now determine the primitive sextic CM-types in each of the cases of Proposition 2.1.
We first consider Case 3. Recall that in the proof of Proposition 2.1 we showed that Case 3
is precisely the case where K does not contain an imaginary quadratic subfield.

Corollary 3.4. Suppose that we are in Case 3 of Proposition 2.1, i.e., K does not contain
an imaginary quadratic field. Then every CM-type (K,ϕ) is primitive.

Proof. Suppose that (K,ϕ) is not primitive. Then K contains a proper CM-subfield K1.
Since K is sextic, K1 is an imaginary quadratic field. This yields a contradiction. �
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3.1. Primitive types in Case 1. We now consider Case 1 from Proposition 2.1. This is
the case in which K/Q is Galois, with Galois group G ≃ C6. We choose a generator σ of
G. Note that complex conjugation corresponds to σ3. Up to replacing ϕ by its complex
conjugate, every CM-type (K,ϕ) may be written as

ϕa,b = {1, σa, σb}, 0 < a, b < 6, a ≡ 1 (mod 3), b ≡ 2 (mod 3).
We find 4 cases: {a, b} ∈ {{1,2},{1,5},{4,2},{4,5}}.
Note that changing the generator σ of G to σ−1 changes {4,5} to {1,2}, therefore we do not
have to consider the choice {4,5}.

We write Ha,b for the subgroup fixing the CM-type as in Proposition 3.3. Then H1,2 =
H1,5 = {1} and H4,2 = ⟨σ2⟩ ≃ C3. Note that K1 ∶=KH4,2 is the imaginary quadratic subfield of
K, which is a CM-field. We conclude that ϕ4,2 is induced from K1, and hence imprimitive.
The other CM-types are primitive.

3.2. Primitive types in Case 2. We now consider Case 2 from Proposition 2.1. We refer
to Section 2 for a description of the fields involved. Recall that K = K1K+. Therefore, an
embedding ψ ∶ K ↪ C corresponds to an ordered pair (ψ1, ψ+), where ψ1 ∶ K1 ↪ C is an
embedding of K1 and ψ+ ∶ K+ ↪ C is an embedding of K+. Since K+ is totally real, the
image of ψ+ is contained in R. We denote the three possible complex embeddings of K+ by
χi for i = 1,2,3. We fix a complex embedding of K1 and denote it by 1. We denote the other
complex embedding of K1 by −1.

A CM-type (K,ϕ) consists of a triple of these ordered pairs in which no two of the pairs
are complex conjugates. Since Gal(K1/Q) is generated by complex conjugation, we simply
choose one of the two complex embeddings of K1 for each embedding χi of K+. This means
that we may write

ϕ = {(ǫi, χi) ∣ i = 1,2,3}, ǫi ∈ {±1}.
Identifying ϕ with its complex conjugate yields four different CM-types.

We determine the imprimitive types. The only CM-field properly contained in K is the
imaginary quadratic field K1. The restriction of the embedding (ǫi, χi) to K1 is just ǫi.
Therefore, the CM-type ϕ = {(ǫi, χi)} is imprimitive if and only if ǫi is independent of i. We
conclude that there is a unique imprimitive CM-type. The other three are primitive.

3.3. Examples of CM-types. We give examples of CM-types illustrating each of the three
cases of Proposition 2.1.

Example 3.5 (K/Q is Galois with Galois group G ≃ C6.). Let K be Q(ζ7) where ζ7 is a
primitive seventh root of unity. The maximal totally real subfield of K is K+ = Q(ζ7 + ζ−17 ),
which has degree three over Q (the minimal polynomial of ζ7 + ζ−17 over Q is x3 +x2 −2x−1).
The field K is a totally imaginary quadratic extension of K+.

The automorphism σ which maps ζ7 to ζ57 generates Gal(K/Q). The fixed field of ⟨σ2⟩ is
Q(ζ47 + ζ27 + ζ7) = Q(√−7). This is the unique imaginary quadratic extension of Q contained
in Q(ζ7). Therefore, the only imprimitive CM-type admitted by K is ϕ2,4 = {1, σ2, σ4}; the
CM-types ϕa,b = {1, σa, σb} for {a, b} ≠ {4,2} with a ≡ 1 (mod 3), b ≡ 2 (mod 3) are all
primitive.

The following examples have been taken from the database of Klüners and Malle ([KM]).
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Example 3.6 (The Galois closure of K/Q is D12). Let K be the sextic field obtained by
adjoining a root of the irreducible polynomial f(x) = x6 −3x5 +x4 +10x2 −9x+3. Then K is
a totally imaginary quadratic extension of the totally real cubic field K+ = Q(α) where the
minimal polynomial of α is g(x) = x3 − 7x2 + 12x − 3. The Galois closure F of K/Q is the
compositum of the Galois closure of K+ with the unique imaginary quadratic subfield K1

of K, given by the minimal polynomial x2 + 3x + 3. The Galois group of F is isomorphic to
S3 ×C2 ≃D12. Denote the roots of g(x) by α1 ∶= α,α2, α3.

Let χi ∶ α1 ↦ αi denote the three real embeddings of K+ and ±1 denote the two complex
embeddings of K1. Then the CM-type ϕ = {(1, χ1), (1, χ2), (1, χ3)} of K is imprimitive, since
its restriction to the quadratic imaginary subfield K1 is also a CM-type. The remaining
three CM-types of K are primitive. For clarity, the primitive CM-types are as follows:{(1, χ1), (−1, χ2), (−1, χ3)},{(1, χ1), (1, χ2), (−1, χ3)},{(1, χ1), (−1, χ2), (1, χ3)}.
Example 3.7 (The Galois closure of K/Q is (C2)3 ⋊ C3). Let K = Q(β) be the degree 6
extension of Q where the minimal polynomial of β is f(x) = x6−2x5+5x4−7x3+10x2−8x+8.
Let F be the Galois closure of K. Then Gal(F /Q) is (C2)3 ⋊ C3. Moreover, K is a CM-
field since K is a totally imaginary quadratic extension of K+ = Q(α) where the minimal
polynomial of α over Q is g(x) = x3 − 7x2 + 14x − 7. Note that K contains no quadratic
subfield, hence every CM-type is primitive.

3.4. Comparison with the genus 2 case. The following proposition characterizes primi-
tive CM-types for quartic CM-fields.

Proposition 3.8. Let K be a quartic CM-field. The following are equivalent.

(1) The CM-type is primitive.
(2) The CM-field K does not contain an imaginary quadratic subfield.

Proof. We recall the argument from Example 8.4.(2) of [Shi98] in which we find a classi-
fication of the possible Galois groups of quartic CM-fields K together with the possible
CM-types. It follows from this classification that if K contains a proper CM-subfield K1 ≠ Q
thenK/Q is Galois with Galois groupG ≃ C2×C2. Moreover, in this case all CM-types are im-
primitive. Namely, denoting again complex conjugation by ρ, we may write G = {1, ρ, σ, ρσ}.
Then the possible CM-types are {1, σ} and {1, ρσ}, which are fixed by ⟨σ⟩ and ⟨ρσ⟩, respec-
tively. Therefore, the statement follows from Proposition 3.3. �

Proposition 3.8 explains why Goren and Lauter ([GL06], [GL07]) restrict to the case where
the quartic CM-field does not contain an imaginary quadratic subfield. For quartic CM-fields,
this is equivalent to requiring that the CM-type is primitive. However, as we have seen in
our discussion of the primitive types in Cases 1 and 2 of Proposition 2.1, these two properties
are not equivalent for sextic CM-fields.

We give two concrete examples of genus 2 curves with CM to illustrate Proposition 3.8.
These are similar to the genus 3 examples given in Section 5.1. We consider two smooth
projective curves defined by the following affine equations

D1 ∶ y5 = x(x − 1),
D2 ∶ y8 = x(x − 1)4.

One easily verifies that both curves have genus 2.
10



The curve D1 has CM by K1 ∶= Q(ζ5) with CM-type (1,2) in the notation of Section
5.1. The Galois group of K1/Q is cyclic of order 4, hence its unique subgroup of order 2 is
generated by complex conjugation, which cannot fix the CM-type. Indeed, the Jacobian of
D1 is simple. In the genus 2 case, all CM-types of a cyclic CM-field are primitive. We have
already seen that this does not hold in general for genus g ≥ 3.

The curve D2 has CM by K2 ∶= Q(ζ8). The corresponding Galois group is isomorphic to
C2 × C2, hence the CM-type is imprimitive. Indeed, the CM-type is (1,3) which is fixed
by ⟨3⟩ ⊂ (Z/8Z)∗. The CM-type (1,3) is induced from the CM-type of the elliptic curve
E ∶=D2/⟨τ⟩, where τ(x, y) = (1/x, y3/x(x − 1)) is an automorphism of order 4.

4. Reduction of CM-curves and their Jacobians

Our main result (Theorem 6.8) deals with curves C of genus 3 defined over some number
field whose Jacobians have CM by a sextic CM-field K. In this section, we describe the
possibilities for the reduction of these curves and their Jacobians to characteristic p > 0.
4.1. The theorem of Serre–Tate. Let C be a curve of genus g ≥ 2 defined over a number
field M , and let J ∶= Jac(C) be its Jacobian. In the course of our arguments, we allow
ourselves to replace M by a finite extension, which we still denote by M . Let ν be a finite
place of M . We write Oν for the valuation ring of ν and kν for its residue field. We write kν
for an algebraic closure of kν .

Recall that the abelian variety J has good reduction at ν if there exists an abelian scheme
J over Oν with J ⊗Oν

M ≃ J . This implies that the reduction J ∶= J ⊗Oν
kν is an abelian

variety. We say that J has potentially good reduction at ν if there exists a finite extension
M ′/M and an extension ν′ of ν such that J ⊗M M ′ has good reduction at ν′.

The following theorem is Theorem 6 of [ST68].

Theorem 4.1. (Serre–Tate) Let J be an abelian variety with CM defined over a number
field M . Let ν be a finite place of M . Then J has potentially good reduction at ν.

Since there are at most finitely places where J does not have good reduction, there exists
a finite extension of M over which J has good reduction everywhere.

4.2. Reduction of genus 3 curves with CM. We now describe the restrictions imposed
by Theorem 4.1 on the reduction of the curve C.

Recall that C is a curve of genus g(C) ≥ 2 defined over a number field M . We say that C
has good reduction at a finite place ν ofM if there exists a model C over Oν with C⊗Oν

M ≃ C
such that the reduction C ∶= C ⊗Oν

kν is smooth. Similarly, C has potentially good reduction
at ν if it has good reduction over a finite extension of M .

We say that C has semistable reduction at ν if there exists a model C over Oν withC⊗Oν
M ≃ C such that the reduction C is semistable. This means that C is reduced and has

at most ordinary double points as singularities. The corresponding model C = Cν is called a
semistable model of C at ν. The Stable Reduction Theorem ([DM69], Corollary 2.7) states
that every curve C admits a semistable model at ν after replacing M by a finite extension.
Since we assume that g(C) ≥ 2, there exists a unique minimal semistable model, which is
called the stable model at ν. Its special fiber C is called the stable reduction of C at ν. The
minimality of the stable model implies that C has potentially good reduction if and only if
the stable reduction C is smooth. If the finite place ν is fixed, we usually omit it.
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We now turn to our situation of interest, namely that of a genus 3 curve whose Jacobian
has CM by a sextic CM-field. The following proposition is a consequence of Theorem 4.1.

We say that C has bad reduction at ν if it does not have potentially good reduction at ν.
This is equivalent to the stable reduction C having singularities. We say that the reduction
C̄ of C is tree-like if the intersection graph of the irreducible components of C is a tree. Note
that we always consider the reduction J (resp. C) as an abelian variety (resp. curve) defined

over the algebraically closed field kν for convenience.

Proposition 4.2. Let C be a curve of genus 3 defined over a number field M such that its
Jacobian J = Jac(C) has CM. Let ν be place of M where C has bad reduction. Then

(a) the stable reduction reduction C of C is tree-like,
and

(b) the reduction J of J is the product of the Jacobians of the irreducible components of
C (as polarized abelian varieties).

Proof. Let ν be a finite place ofM . After replacing M by a finite extension and choosing an
extension of ν, we may assume that C has stable reduction at ν. Let C be the stable model
of C. Set S = Spec(Oν), and define Pic0(C/S) to be the identity component of the Picard
variety. Since the stable reduction C of C is reduced, Theorem 1 in Section 9.5 of [BLR90]
states that Pic0(C/S) is a Néron model of J .

Theorem 4.1 implies that J has potentially good reduction, i.e., there exists an abelian
variety J over S with generic fiber J . Proposition 8 of Section 1.2 in [BLR90] shows that J /S
is a Néron model. Since two different Néron models are canonically isomorphic, it follows that
Pic0(C/S) ≃S J . In particular, it follows that the special fiber Pic0(C/S)⊗Oν

kν ≃ Pic0(C) is
an abelian variety.

Example 8 of Section 9.2 in [BLR90] shows that Pic0(C) is given by an exact sequence

1→ T → Pic0(C)→ B ∶= ∏
i

Jac(C̃i)→ 1, (4.1)

where B is an abelian variety and T is a torus. The product on the right-hand side is
taken over the irreducible components of C. We denote the normalization of an irreducible
component Ci of C by C̃i. The torus T satisfies

T ≃ Gt

m,kν

for some t ≥ 0. The torus Gm is not compact, and hence not an abelian variety. Since Pic0(C)
is an abelian variety, the exact sequence (4.1) implies that t = 0, i.e., Pic0(C) contains no
torus. By Corollary 12.b of [BLR90], this means that the intersection graph of the irreducible
components of C is a tree. Both statements of the proposition follow from this. �

The corollary below follows immediately from Proposition 4.2. In Section 5, we give
examples of each of the cases.

Corollary 4.3. Let C be a genus 3 curve with CM defined over a number field M , and let
ν be a finite place of M . One of the following three possibilities holds for the irreducible
components of C of positive genus:

(i) (good reduction) C is a smooth curve of genus 3,
(ii) C has three irreducible components of genus 1,

12



(iii) C has an irreducible component of genus 1 and one of genus 2.

Note that the stable reduction C may contain irreducible components of genus 0. This
happens for the stable reduction C1 to characteristic 3 of the curve C1 from Lemma 5.3, for
example. One may show that C1 has four irreducible components: one of genus 0 and three
of genus 1. The three elliptic curves each intersect the genus 0 curve in one point but do not
intersect each other. Since the irreducible components of genus 0 do not contribute to the
Jacobian, we have not listed them in Corollary 4.3.

Remark 4.4. Let C be a curve of genus 3 with CM, defined over a number fieldM . Suppose
that C has bad reduction at a finite place ν ofM . In Case (ii) of Corollary 4.3, the reduction
C of C contains three irreducible components Ei of genus 1. Proposition 4.2 implies that

J ≃ E1 ×E2 ×E3

as polarized abelian varieties, i.e., the polarization on J is the product polarization.
In Case (iii) of Corollary 4.3, C contains an irreducible component E of genus 1 and an

irreducible component D of genus 2. In this case, we have

J ≃ E × Jac(D)
and the polarization on J is induced by E × {0} + {0} ×D ↪ J . We show below that in this
case J is still isogenous to a product of elliptic curves (Theorem 4.5). However, it is not

true that the polarization of J is induced by polarization on the three elliptic curves as we
had in Case (ii).

Even in the case where C has good reduction (Case (i) of Corollary 4.3), the reduction J
of the Jacobian need not be simple even if J is. In this case, the polarization of J is induced
by the embedding of C in its Jacobian and hence is not a product polarization.

The following theorem is a generalization of Theorem 3.2 to positive characteristic.

Theorem 4.5. Let J be an abelian variety of dimension 3 with CM, defined over a number
field M . Suppose that the reduction J of J at a finite place of M is not simple. Then J is
isogenous to the product of three copies of the same elliptic curve E.

Proof. The result is essentially a special case of Theorem 1.3.1.1 of [CCO14]. For the conve-
nience of the reader we sketch a direct proof in our situation.

By assumption, J has CM by the sextic CM-field K. This implies that we have an
embedding

K ↪ End0(J).
Decompose J into isotypic components: J ∼∏iA

ni

i where the Ai are simple and Ai /∼ Aj for
i ≠ j. Since J is not simple by assumption, for dimension reasons there exists j such that
Aj = E is an elliptic curve. We have K ↪ End0(J) = ∏iMni

(End0(Ai)). Projecting this
ring homomorphism on the jth factor gives an injection K ↪Mnj

(End0(E)). A dimension

argument shows that nj = 3 and therefore J ∼ E3. �

Proposition 4.6. Let C be a genus 3 curve with CM, defined over a number field M .
Suppose that C has bad reduction at a finite place ν of M . Then the reduction J of the
Jacobian J of C is supersingular or K contains an imaginary quadratic field K1.
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Proof. Let C and J be as in the statement of the proposition. Since C has bad reduction at
ν, Corollary 4.3 shows that C has an irreducible component E1 of genus 1. It follows that
we may regard E1 as abelian subvariety of J . (This is slightly weaker than the statement
in Remark 4.4.) In particular, J is not simple. Theorem 4.5 implies therefore that J is
isogenous to the product of three copies of an elliptic curve E. Note that J is supersingular
if and only if E is.

We assume that E is ordinary. Since E may be defined over a finite field, it has CM and
K1 ∶= End0(E) is an imaginary quadratic field contained in the center of End0(E3) =M3(K1).
Since J is isogenous to E3, we obtain an embedding

K = End0(J)↪ End0(J) ≃ End0(E3) =M3(K1).
Theorem 1.3.1.1 of [CCO14] states that K is its own centralizer in M3(K1). Since the center
of M3(K1) is K1, we conclude that K1 is contained in K and the result follows. �

The following corollary summarizes the results so far in the case that the CM-field K does
not contain an imaginary quadratic subfield K1.

Corollary 4.7. Let C be a genus 3 curve with CM by K, defined over a number field M .
Suppose that K does not contain an imaginary quadratic subfield. Then the following hold:

(a) the CM-type (K,ϕ) of J is primitive, and J is absolutely simple,
(b) if C has bad reduction at a finite place ν, then the reduction of J at ν is supersingular.

Proof. Part (a) follows from Corollary 3.4 and Theorem 3.2. Part (b) follows from Proposi-
tion 4.6. �

4.3. Polarizations and the Rosati involution. In the rest of this section, we recall some
results on the Rosati involution following Sections 20 and 21 of [Mum70] and Section 17
of [Mil08]. For precise definitions and more details, we refer to these sources. Let A be an
abelian variety and λ ∶ A→ A∨ be a polarization associated with an ample line bundle L on A.
The polarization λ is an isogeny and therefore has an inverse 1

degλ
λ∨ = λ−1 ∈ Hom(A∨,A)⊗ZQ.

The Rosati involution on End0(A) = End(A)⊗Q is defined by

f ↦ f∗ = λ−1 ○ f∨ ○ λ.
It satisfies

(f + g)∗ = f∗ + g∗, (fg)∗ = g∗f∗, a∗ = a
for f, g ∈ End0(A) and a ∈ Q. In the case where λ is a principal polarization, i.e., deg(λ) = 1,
the Rosati involution acts as an involution on End(A). This is because λ−1 is in Hom(A∨,A)
and not just in Hom(A∨,A) ⊗Z Q. The natural polarization on a Jacobian is a principal
polarization.

The Rosati involution is a positive involution (Theorem 1 of Section 21 in [Mum70]). This
means that

(f, g)↦ Tr(f ⋅ g∗), End0(A)→ Q

defines a positive definite quadratic form on End0(A). (We refer to Section 21 of [Mum70]
for the precise definition of the trace.) In the case that A = E is an elliptic curve, we choose
the polarization λ defined as

λ ∶ E → Pic0(E), P ↦ [P ] − [O].
14



The corresponding Rosati involution sends an isogeny f to its dual isogeny f∨ and Tr(f ⋅f∨)
is deg(f), the degree of the endomorphism f .

Proposition 4.8. Let A be a simple abelian variety defined over a field of characteristic
zero with principal polarization λ. Assume that A has CM by a field K. Then the Rosati
involution associated with λ induces complex conjugation on the CM-field K.

Proof. Since A is simple, the endomorphism algebra End0(A) equals K and the proposition
is proved, for example, in Lemma 1.3.5.4 of [CCO14]. �

Remark 4.9. Let A be a simple abelian variety with End0(A) = K as in the statement of
Proposition 4.8. Let M be a number field over which A can be defined, and let p be a prime
of M at which A has good reduction. Write A for the reduction. We obtain an embedding

K ↪ End0(A).
The Rosati involution on End0(A) is an extension of the Rosati involution on End0(A) =K,
which is complex conjugation by Proposition 4.8.

The following proposition was used in the proofs of [GL07] but not stated there explicitly.

Proposition 4.10. Suppose that A = En is a product of elliptic curves as polarized abelian
varieties. Then the Rosati involution acts as

Mn(End(E))→Mn(End(E)), (fi,j)↦ (f∨j,i).
Proof. The result is well known to the experts. We sketch the argument. The proof we
present here is a variant of the proof of Proposition 11.28 (ii) of [GM].

Let A = En be as in the statement of the lemma, and write pi ∶ A → E for the projection
on the ith coordinate. Then any line bundle L on A satisfies L = p∗1L1⊗⋯⊗p∗nLn for suitable
line bundles Li on E.

Consider the natural map A∨ = Pic0(A) → (Pic0(E))n = (E∨)n which sends a line bundleL ∈ Pic0(A) to the n-tuple (L∣Ei
)i ∈ (Pic0(E))n of the restrictions of L to the ith copy

Ei ∶= (⋯,0,E,0,⋯) of E. One shows that this map is an isomorphism (Exercise 6.2 of
[GM]). The product polarization λA ∶ A → A∨ = (E∨)n is induced by the natural polarization
λ ∶ E → Pic0(E) on E. In particular, it is also a principal polarization.

Using this identification, it suffices to prove the proposition in the case that f ∈ End(A)
corresponds to a n×n matrix with an endomorphism α ∈ End(E) as (j, i)th component and
zeros everywhere else. The endomorphism f∨ ∶ A∨ → A∨ induced by f sends a line bundle L
on A to p∗i (α∗Li). We conclude that the dual isogeny f∗ ∶ A → A = En corresponds to the
matrix with the dual isogeny α∨ in the (i, j)th coordinate and zeros elsewhere. This proves
the proposition. �

5. Examples

In this section we discuss some examples of genus 3 curves with CM.

5.1. Cyclic covers. The first type of examples we consider are N -cyclic covers of the pro-
jective line branched at exactly three points, see also Sections 1.6 and 1.7 of Chapter 1 of
[Lan83]. More precisely, let C be a smooth projective curve defined over a field of charac-
teristic zero which admits a Galois cover π ∶ C → P1 whose Galois group is cyclic of order N
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such that π is branched exactly at three points. We may assume the three branch points to
be 0,1,∞ ∈ P1.

Kummer theory implies the existence of integers 0 < a1, a2 < N with gcd(N,a1, a2) = 1
such that the extension of function field corresponding to π is

Q(x) ⊂ Q(x)[y]/(yN − xa1(x − 1)a2).
The Galois group of π is generated by α(x, y) = (x, ζNy), where ζN is a primitive Nth root
of unity.

Define 0 < a3 < N by a1 + a2 + a3 ≡ 0 (mod N). Then a chart at ∞ may be given by

wN = za3(z − 1)a2 ,
where z = 1/x. The condition that π is branched at ∞ is therefore equivalent to a3 ≡
−(a1 + a2) /≡ 0 (mod N). The Riemann–Hurwitz formula shows that

2g(C) − 2 = −2N + 3

∑
i=1

(N − gcd(N,ai)).
In Lemma 5.1 below, we show that the endomorphism ring of Jac(C) contains Q(ζN).

Therefore Jac(C) has CM by Q(ζN) if and only if 2g(C) = ϕ(N), where ϕ denotes Euler’s
totient function. For example, this condition is satisfied if N is an odd prime. This case is
discussed by Lang (Section 1.7 of Chapter 1 of [Lan83]).

The condition 2g(C) = ϕ(N) is satisfied for exactly three curves Ci, up to isomorphism.
Kummer theory implies that two tuples (N,a1, a2, a3) and (M,b1, b2, b3) define isomorphic
curves if and only ifN =M and there exists an integer c with gcd(c,N) = 1 and a permutation
σ ∈ S3 such that bi ≡ caσ(i) (mod N) for all i. This is similar to the argument in Section 1.7
of Chapter 1 of [Lan83].

The three curves satisfying this property are:

C1 ∶ y9 = x(x − 1)3,
C2 ∶ y7 = x(x − 1)2,
C3 ∶ y7 = x(x − 1).

An alternative equation for C1 is

y3 = z4 − z, where z3 = x. (5.1)

We put KNi
= Q(ζNi

) and GNi
= (Z/NiZ)∗. In the three cases we consider in Lemma 5.1,

we have GNi
≃ C6. For j ∈ (Z/NiZ)∗, we denote the corresponding element of Gal(KNi

/Q)
by

σj ∶ ζNi
↦ ζ

j
Ni
,

or also by j when no confusion can arise.
The following lemma summarizes the properties of the curves Ci.

Lemma 5.1. (a) The curve C1 has CM by Q(ζ9). The CM-type is (1,2,4). This type
is primitive.

(b) The curve C2 has CM by Q(ζ7) and CM-type (1,2,4). This type is imprimitive.
(c) The curve C3 has CM by Q(ζ7) and CM-type (1,2,3). This type is primitive.
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Proof. It is easy to check that the automorphism α of Ci has a fixed point. Using this point to
embed the curve Ci in its Jacobian, we see that α induces an endomorphism α ∈ End(Jac(Ci))
of multiplicative order Ni.

We may regard α ∈ End(Jac(Ci)) as a primitive Nith root of unity. In all three cases, we
have 2g(Ci) = 6 = ϕ(Ni) = [Q(ζNi

) ∶ Q]. It follows that Ci has CM by KNi
.

To calculate the CM-type of Ci we follow the strategy of Section 1.7 of Chapter 1 of
[Lan83], and identify the cohomology group H0(Ci,Ω) of holomorphic differentials with the
tangent space of Jac(C). It suffices to find a basis of H0(Ci,Ω) consisting of eigenvectors of
α∗, the map induced by α on H0(Ci,Ω). Such a basis is computed in Section 1.7 of Chapter
1 of [Lan83]. The statement on the CM-type easily follows from this. (The fact that the
action of ⟨α⟩ on H0(Ci,Ω) does not factor through the action of a quotient group provides
a second proof that α defines an endomorphism of order Ni of Jac(Ci).)

We explain what happens for C1. We use a slightly different notation from Theorem 1.7.1
of Chapter 1 of [Lan83]. A basis of H0(C1,Ω) is given by

ω1 =
y dx

x(x − 1) , ω2 =
y2 dx

x(x − 1) , ω4 =
y4 dx

x(x − 1)2 .
Note that α∗ωi = ζ i9ωi. The statement on the CM-type of Jac(C1) follows. Primitivity is
shown in Section 3.1.

In Example 3.5 we have determined all primitive CM-types for Q(ζ7). The statements on
the (im)primitivity of the CM-types of C2 and C3 follow from this. �

Remark 5.2. Lemma 5.1.(b) implies that Jac(C2) is not simple. We may also check this
directly. The curve C2 admits an automorphism

β(x, y) = ( 1

1 − x
,
y2

1 − x
) .

The curve E ∶= C2/⟨β⟩ has genus 1. This curve has CM by the field K1 = Q(ζ7)⟨σ2⟩ = Q(√−7).
One checks that ⟨α,β⟩ ≃ Z/7Z ⋊Z/3Z is a non-abelian group. Using the method of Kani–

Rosen ([KR89] or [Pau08]), one may also deduce from this that

Jac(C2) ∼ E3.

Our next goal is to describe the reduction behavior of the curves C1 and C3.

Lemma 5.3. (a) The curve C1 has bad reduction at p = 3 and good reduction at all other
primes.

(b) The reduction J1,p of the Jacobian J1 of C1 to characteristic p is ordinary if and only
if p ≡ 1 (mod 9) and supersingular if and only if p = 3 or p ≡ 2 (mod 3).

(c) If p ≡ 4,7 (mod 9), then the abelian variety J1,p is simple.

Proof. It is easy to see that C1 has good reduction to characteristic p ≠ 3. Indeed, (5.1) still
defines a smooth projective curve in characteristic p ≠ 3. We consider the reduction at p = 3.
In this case, the extension of function fields

F3(z) ⊂ F3(z)[y]/(y3 − z(z3 − 1))
defines a purely inseparable field extension. This implies that F3(z)[y]/(y3 − z(z3 − 1)) is
the function field of a curve of genus 0. This does not imply that C1 has bad reduction to
characteristic 3, since there could be a different model.
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We claim that there does not exist a curve of genus 3 in characteristic 3 with an automor-
phism of order 9. This claim implies that C has bad reduction to characteristic 3. Indeed, if
C has potentially good reduction, then the automorphism group Aut(C) of the reduction C
of C contains Aut(C). Hence, in particular, Aut(C) contains an automorphism of order 9.

To obtain a contradiction, we assume that X is a curve of genus 3 in characteristic 3 with
an automorphism γ of order 9. We consider the Galois cover

X →X/⟨γ⟩.
This cover is wildly ramified of order 9 above at least one point. We apply the Riemann–
Hurwitz formula to this cover. It follows from Theorem 1.1 of [OP10] that the contribution
of a wild ramification point with ramification index 9 to 2g(X)−2 in the Riemann–Hurwitz
formula is at least 2 ⋅ (9 − 1) + 5 ⋅ (3 − 1) = 26, which contradicts the assumption that X has
genus 3. This proves (a).

We have shown that C1 has bad reduction to characteristic 3. Let C1,3 be the stable

reduction of C1 to characteristic 3. Then C1,3 contains at least 2 irreducible components
of positive genus (Corollary 4.3). Furthermore, there is an automorphism of order 9 acting
on C1,3. The only way this is possible is if C1,3 contains three irreducible components of
positive genus, which are then elliptic curves, each with an automorphism of order 3. The
automorphism of order 9 permutes these components. There is a unique elliptic curve with
an automorphism of order 3, namely the elliptic curve with j = 0. In characteristic 3 this
curve may be given by

w3
−w = v2. (5.2)

This curve is supersingular by the Deuring–Shafarevich formula ([Cre84]). We conclude that
the reduction J1,3 of the Jacobian of C1 to characteristic 3 is supersingular. Proposition

4.2.(b) implies that J1,3 is in fact superspecial: the Jacobian J1,3 is isomorphic to three
copies of the supersingular elliptic curve (5.2) as a polarized abelian variety.

The rest of (b) may be deduced from [Yui80]. For p ≡ 4,7 (mod 9), Yui’s results [Yui80]
imply that J is neither ordinary nor supersingular. In fact, her results imply that J has
p-rank zero, but is not supersingular. Theorem 4.5 therefore implies that J is simple. �

The situation for C3 is similar but somewhat easier.

Lemma 5.4. (a) The curve C3 has good reduction at p ≠ 7 and potentially good reduction
at p = 7.

(b) The reduction J3,p of the Jacobian J3 of C3 to characteristic p is ordinary if and only
if p ≡ 1 (mod 7) and supersingular if and only if p = 7 or p ≡ −1,3,5 (mod 7).

Proof. The fact that C3 has good reduction to characteristic p ≠ 7 follows as in the proof
of Lemma 5.3. The curve C3 has potentially good reduction to characteristic 7 as well, see
Example 3.8 of [BW12]. The curve C3 does not have good reduction over Q7 but acquires
good reduction over the extension Q7(ζ7) of Q7.

Statement (b) for p ≠ 7 follows from [Yui80]. We consider the reduction C3,7 of C to

characteristic 7. In characteristic 7, the reduction C3,7 is given by

w7
−w = v2,

18



by Example 3.8 of [BW12]. By the Deuring–Shafarevich formula, it follows that the Jacobian
J3,7 of C3,7 has p-rank 0. To show that it is supersingular, it suffices to find an elliptic quotient

of the curve C3,7.

The curve C3,7 admits an extra automorphism of order 3 given by

β(v,w) = (ζ3v, ζ23w),
where ζ3 ∈ F×7 is an element of order three. The automorphism β has exactly two fixed points,

namely the points with w = 0,∞. It follows that E3,7 ∶= C3,7/⟨β⟩ is an elliptic curve. This

shows that J3,7 is supersingular. �

5.2. A Picard curve example. We end this section by considering Example 3 from Section
5 of [KW05], wherein Koike and Weng study Picard curves with CM. We show that the curve
in the aforementioned example has bad reduction to characteristic p = 5, and that the stable
reduction consists of an elliptic curve and a curve of genus 2. We will show that the Jacobian
has superspecial reduction in this case. This is an example where the reduction J of the
Jacobian is isomorphic to E3, but the polarization is neither that of a smooth curve nor the
product polarization E × {0} × {0} + {0} ×E × {0} + {0} × {0} ×E.

A Picard curve is a curve of genus 3 given by an equation

y3 = f(x),
where f(x) ∈ C[x] is a polynomial of degree 4 with simple roots. Every Picard curve admits
an automorphism α(x, y) = (x, ζ3y). Therefore, the endomorphism ring of the Jacobian
contains Q(ζ3).

Let C4 be the smooth projective curve defined by

y3 = f(x) ∶= x4 − 13 ⋅ 2 ⋅ 72 ⋅ x2 + 23 ⋅ 13 ⋅ 5 ⋅ 47 ⋅ x − 52 ⋅ 31 ⋅ 132.
Koike and Weng show that the Jacobian of C4 has CM by the field K = K+K1 with K1 =
Q(ζ3) and K+ = Q[t]/(t3 − t2 − 4t − 1). The CM-field K is Galois over Q, hence we are in
Case 1 of Proposition 2.1. One may show that the corresponding CM-type is primitive. For
example, one may check using [Bou01] that the reduction J4,7 of the Jacobian J4 of C4 to
characteristic 7 has p-rank 1, and hence is neither ordinary nor supersingular. It follows
from this that the Jacobian J4 is simple. The primitivity of the CM-type follows from this,
by Theorem 3.2.

We now consider the reduction of C4. The discriminant of f is 212 ⋅ 56 ⋅ 134 which shows
that C4 has good reduction for p ≠ 2,3,5,13. One may check that C4 also has good reduction
at p = 2,13. We do not consider what happens for p = 3.

We determine the reduction at p = 5. Note that

f(x) ≡ x2(x + 2)(x − 2) = x4 + x2 (mod 5). (5.3)

Therefore, the stable reduction of C4 contains an irreducible component D of genus 2 given
by the equation

ȳ3 = x̄2(x̄2 + 1). (5.4)

The reason that this curve has genus 2 rather than 3 is that the 3-cyclic cover (x̄, ȳ)↦ x̄ has
only 4 branch points in characteristic 5, and not 5 branch points as it had in characteristic
zero. It follows that the curve C4 has bad reduction to characteristic 5, and the reduction of
C4 consists of the curve D of genus 2 intersecting with an elliptic curve. (We do not actually
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have to compute the elliptic component to conclude this.) The reduction J4 of the Jacobian
of C4 is therefore isogenous to the product of an elliptic curve and the abelian surface Jac(D).
To determine the reduction type of J4, we first consider the Jacobian Jac(D) of the curve
D given by the equation (5.4).

One may show by computing the Hasse–Witt matrix of D that the Jacobian J(D) is
supersingular. This is a similar calculation to the one we did in Section 5.1. However,
since D has genus 2, it suffices to compute the p-rank. In fact, the Hasse–Witt matrix is
identically zero, which shows that J(D) is superspecial, i.e., isomorphic to the product of
two supersingular elliptic curves.

Alternatively, we may note that D has additional automorphisms given by

τ(x̄, ȳ) = (−x̄, ȳ), ρ(x̄, ȳ) = (−1
x̄
,
ȳ

x̄2
) , τ ○ ρ(x̄, ȳ) = (1

x̄
,
ȳ

x̄2
) .

Note that τ fixes the two points with x̄ = 0,∞ and ρ fixes the two points with x̄2 = −1. The
quotients C4/⟨τ⟩ and C4/⟨ρ⟩ are elliptic curves, each with an automorphism of order 3. In
particular, these elliptic curves have j = 0. Since p = 5 ≡ 2 (mod 3), they are supersingular.
Theorem 4.5 implies that J is isogenous to E3

0 , where E0 denotes the supersingular elliptic

curve over F5 with j = 0.
Remark 5.5. The examples we discussed in this section all have the property that the
CM-field K contains a CM-subfield K1 with Q ⊊ K1 ⊊ K. In Section 6.4, we will show that
this implies that the embedding problem, which we formulate in Section 6, has degenerate
solutions for every prime. This explains why we exclude this case in Theorem 6.8.

Remark 5.6. Let K be a sextic CM-field. It is known how to construct genus 3 curves C in
characteristic 0 with CM by K ([Shi98], Sections 6.2 and 14.3). We sketch the construction.

We fix a CM-type (K,ϕ). Let δK/Q be the different. For any ideal a of OK we consider
the lattice ϕ(a) = (ϕ1(a), ϕ2(a), ϕ3(a)). Then

A ∶= C3/ϕ(a)
is an abelian variety with CM by (K,ϕ). Shimura (Theorem 3 of Section 6.2 in [Shi98])
shows that all CM abelian varieties occur in this way.

In Section 14.3 of [Shi98], Shimura also describes all Riemann forms defining principal
polarizations on A. Such a Riemann form exists if the following two conditions are satisfied.

● The ideal δK/Qaa = (a) is principal.
● There exists a unit u ∈ OK such that ua is totally imaginary and the imaginary part
of ϕi(ua) is negative for all i.

Every principally polarized abelian variety of dimension 3 is isomorphic to the Jacobian
of a (possibly singular) genus 3 curve C by Theorem 4 of [OU73]. More precisely, Oort
and Ueno show that the curve C is of compact type, meaning that A is isomorphic to the
product of the Jacobians of the irreducible components of positive genus of C. (This notion
is essentially the same as the notion “tree-like” that we used in Section 4.2.) In our situation,
the abelian variety A is simple, and it follows that the curve C is smooth.

6. Embedding problem
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6.1. Formulation of the embedding problem. Let C be a genus 3 curve defined over
some number fieldM . We assume that the Jacobian J = Jac(C) has CM by a sextic CM-field
K. After replacing M by a finite extension if necessary, we may assume that J has good
reduction (Theorem 4.1) and that C has stable reduction at all finite places of M .

In this section, we make the following important assumption.

Assumption 6.1. We assume that K does not contain an imaginary quadratic subfield.

Recall that Assumption 6.1 implies that the CM-type of C is primitive (Corollary 4.7).
The reason for making this assumption is discussed in Section 6.4.

Let p be a finite prime of M where the curve C has bad reduction. We write k for the
algebraic closure of the residue field at p and let p denote the residue characteristic. We
want to bound these primes p. (See Theorem 6.8 for the precise statement of our result.)
Recall from Corollary 4.3 that there are two possibilities for the reduction C of C. In this
section, we only deal with the case where C has three irreducible components of genus 1 and
postpone the other case for future work. To summarize, we make the following assumption
on the prime p.

Assumption 6.2. Let p be a finite prime of M , such that the stable reduction C = Cp of C
at p contains three elliptic curves as irreducible components (Case (ii) of Corollary 4.3).

Let p be as in Assumption 6.2. We write E1,E2,E3 for the three elliptic curves that are
the irreducible components of C. We write J for the reduction of J at p. Recall from Remark
4.4 that we have an isomorphism

J ≃ E1 ×E2 ×E3

as polarized abelian varieties, i.e., the polarization on J is the product polarization. Corollary
4.7 implies that the Ei are supersingular. In particular, they are isogenous. (This also follows
from Theorem 4.5).

Let End(J) = O ⊂ OK . Reduction at the prime p gives an injective ring homomorphism

O ↪ End(J) ≃ End(E1 ×E2 ×E3).
Problem 6.3 (The embedding problem). Let O be an order in a sextic CM-field K, and let
p be a prime number. The embedding problem for O and p is the problem of finding elliptic
curves E1,E2,E3 defined over a field of characteristic p, and a ring embedding

i ∶ O ↪ End(E1 ×E2 ×E3)
such that the Rosati involution on End(E1 × E2 × E3) induces complex conjugation on O.
We call such a ring embedding a solution to the embedding problem for O and p.

The following result states that if we have a solution to the embedding problem then the
elliptic curves Ei are automatically isogenous. The proof we give here works directly with
the abelian variety E1 ×E2 ×E3 without considering it as the reduction of an abelian variety
in characteristic zero. However the proof is essentially the same as the proofs of Theorem
4.5 and Proposition 4.6.

Lemma 6.4. Let K be a sextic CM-field. Suppose that there exist elliptic curves E1,E2,E3

defined over a field of characteristic p > 0 and an injective Q-algebra homomorphism

i ∶K ↪ End0(E1 ×E2 ×E3).
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Then the elliptic curves E1, E2 and E3 are all isogenous. Furthermore, if K contains no
imaginary quadratic subfield then the Ei are supersingular.

Proof. First suppose that no two of the elliptic curves E1, E2, E3 are isogenous. Then

i ∶K ↪ End0(E1 ×E2 ×E3) = ⎛⎜⎝
End0E1 0 0

0 End0E2 0
0 0 End0E3

⎞⎟⎠ = End
0E1 ×End

0E2 ×End
0E3.

Projecting on the factor End0Ei gives a ring homomorphism K ↪ End0Ei. Since K
is a field, this ring homomorphism must be injective. But End0Ei is either an imaginary
quadratic field or a quaternion algebra, neither of which can contain a sextic field.

Now suppose that exactly two of the elliptic curves are isogenous. Without loss of gener-
ality, we may assume that E1 ∼ E2 and E1 /∼ E3. Then

i ∶K ↪ End0(E1 ×E2 ×E3) = ⎛⎜⎝
End0E1 End0E1 0
End0E1 End0E1 0

0 0 End0E3

⎞⎟⎠ =M2(End0E1) ×End0E3.

Again, projecting on the factor End0E3, we see that K ↪ End0E3. This is impossible for
dimension reasons. Thus, we have proved that all three elliptic curves are isogenous.

Now suppose that K contains no imaginary quadratic subfield and that the elliptic curves
Ei are ordinary. Then End0E1 =K1 for some imaginary quadratic field K1 and

i ∶K ↪ End0(E1 ×E2 ×E3) =M3(K1).
Let β be a generator for K over Q and let f be its minimal polynomial, which has degree
6. The matrix i(β) ∈M3(K1) has a minimal polynomial of degree at most 3 over K1. Since
i is an injective Q-algebra homomorphism, this means that f splits over K1. Since K1

is quadratic, this implies that K1 ↪ K, contradicting the assumption that K contains no
imaginary quadratic subfield. �

Proposition 6.5. Let C be a genus 3 curve such that O ∶= End(Jac(C)) is an order in
a sextic CM-field K satisfying Assumption 6.1. Let M be a number field over which C is
defined, and let p be a prime of bad reduction of C such that Assumption 6.2 is satisfied.
Write p for the residue characteristic of p. Then there exists a solution to the embedding
problem for O and p. Moreover, in this situation the three elliptic curves are supersingular.

Proof. Let C be as in the statement of the proposition. Then the CM-type of its Jacobian J
is primitive (Corollary 4.7.(a)). Therefore the Rosati involution acts as complex conjugation
on End0(J) = K by Proposition 4.8. The canonical polarization on the Jacobian J is a
principal polarization, therefore the Rosati involution also acts on End(J) = O.

Assumption 6.2 implies that the reduction J of the Jacobian at p is isomorphic to a product
of three elliptic curves Ei as polarized abelian varieties. These elliptic curves are supersin-
gular (Corollary 4.7.(b)). Remark 4.9 shows that we obtain a solution to the embedding
problem. �

6.2. Endomorphisms of J as 3×3 matrices. In this section we describe the ring End(E1×

E2 ×E3) from the embedding problem (Problem 6.3). Recall that we may assume that the
Ei are isogenous (Lemma 6.4). We recall from Proposition 4.10 the description of the Rosati
involution corresponding to the product polarization on E1 ×E2 ×E3.
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We can view an element f ∈ End(E1 ×E2 ×E3) as a matrix

f =
⎛⎜⎝
f1,1 f1,2 f1,3
f2,1 f2,2 f2,3
f3,1 f3,2 f3,3

⎞⎟⎠ ,
where fi,j ∈ Hom(Ej ,Ei). Given two endomorphisms f, g the composition f ○ g corresponds

to multiplication of matrices. Since the polarization on J = E1 × E2 × E3 is the product
polarization, the Rosati involution f ↦ f∗ sends f to

⎛⎜⎝
f∨1,1 f∨2,1 f∨3,1
f∨1,2 f∨2,2 f∨3,2
f∨1,3 f∨2,3 f∨3,3

⎞⎟⎠
where f∨i,j denotes the dual isogeny of fi,j.

For i = 2,3, let ψi ∶ E1 → Ei be an isogeny of degree δi. Let f ∈ End(E1 ×E2 ×E3). Then
the composition

E1 ×E1 ×E1

(1,ψ2,ψ3)
// E1 ×E2 ×E3

(1,δ−1
2
ψ∨
2
,δ−1

3
ψ∨
3
)
// E1 ×E1 ×E1

induces an injective Q-algebra homomorphism

End0(E1 ×E2 ×E3)↪ End0(E1 ×E1 ×E1) =M3(End0E1). (6.1)

Let Φ denote the composite map

Φ ∶K ↪ End0(E1 ×E2 ×E3)↪M3(End0E1).
It is easily seen that

⎛⎜⎝
1 0 0
0 δ2 0
0 0 δ3

⎞⎟⎠Φ(O) ⊂M3(EndE1).
Under the assumptions made in Section 6.1, we may assume that the elliptic curves Ei in

the formulation of the embedding problem are supersingular (Proposition 6.5). We therefore
recall some well-known facts on the endomorphism ring of a supersingular elliptic curve.

Let p ∈ Z>0 be the rational prime lying below p.

Proposition 6.6. Let E be a supersingular elliptic curve defined over a field of characteristic
p. Then End0E is a quaternion algebra over Q ramified at precisely the places {p,∞}. This
quaternion algebra is non-canonically isomorphic to the algebra Bp,∞, where Bp,∞ = (−1,−1Q

)
if p = 2 and if p is odd, Bp,∞ = (−ε,−pQ

) where

ε =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if p ≡ 3 (mod 4),
2 if p ≡ 5 (mod 8),
ℓ if p ≡ 1 (mod 8).

In the case that p ≡ 1 (mod 8), ℓ ∈ Z>0 is a prime such that ℓ ≡ 3 (mod 4) and ℓ is not
a square modulo p. Any isomorphism sends EndE to an order of Bp,∞ and the involution
given by taking the dual isogeny corresponds to the canonical involution on Bp,∞.
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Proof. The fact that the endomorphism algebra End0(E) of a supersingular elliptic curve is
a quaternion algebra over Q ramified precisely at {p,∞} is proved, for example, in Section
21 of [Mum70]. The statement on the Rosati involution is also proved in loc. cit. The
uniqueness of the quaternion algebra is proved, for example, in Theorem III.3.1 of [Vig80].

For p = 2, let Q = (−1,−1
Q
). For every odd prime p, let ε be as in the statement of the

proposition and let Q = (−ε,−p
Q
) be the corresponding quaternion algebra. The statement

that Q is exactly ramified at the places {p,∞} follows easily from the properties of the
Hilbert symbol (page 37 of [Vig80]). �

For b ∈ Bp,∞, we write Nrd(b) = bb∗ (where b∗ represents the involution on the quaternion
algebra) for the reduced norm of b. The reduced norm corresponds to the degree of an
endomorphism under the identification in Proposition 6.6.

Lemma 6.7 (Elements of small norm commute). [GL07, Corollary 2.1.2] Let R be a maximal
order of Bp,∞. If k1, k2 ∈ R and Nrd(k1),Nrd(k2) <√p/2 then k1k2 = k2k1.

6.3. Bounding the primes of bad reduction for C. Recall that J = Jac(C) is the
Jacobian of a genus 3 curve C which has complex multiplication by an order O in a sextic
CM-field K which does not contain an imaginary quadratic field (Assumption 6.1). Let K+

denote the totally real cubic subfield of K. The main result of this section is Theorem 6.8
which gives an upper bound on the primes of bad reduction for C satisfying Assumption 6.2.

Theorem 6.8. Suppose that K does not contain an imaginary quadratic subfield. Let p ∣ p
be a prime of bad reduction for C satisfying Assumption 6.2. Write K = Q(√α) for some
totally negative element α ∈K+ ∖Z with

√
α ∈ O = End(J). Then p ≤ 4TrK+/Q(α)6/36.

The existence of such α is guaranteed because the sextic CM-field K contains no imaginary
quadratic subfield. By Proposition 6.5, the following result implies Theorem 6.8.

Theorem 6.9. Suppose that K does not contain an imaginary quadratic subfield. Let p be
a prime such that there exists a solution to the embedding problem (Problem 6.3) for some
order O of K. Write K = Q(√α) for some totally negative element α ∈K+∖Z with

√
α ∈ O.

Then p ≤ 4TrK+/Q(α)6/36.
We break down the proof of Theorem 6.9 into several lemmas.
Let

Q =
⎛⎜⎝
r s t

u v w

x y z

⎞⎟⎠
be the image of

√
α in End(E1 ×E2 ×E3). By Proposition 4.8, the Rosati involution corre-

sponds to complex conjugation on K, so we have

⎛⎜⎝
r∨ u∨ x∨

s∨ v∨ y∨

t∨ w∨ z∨

⎞⎟⎠ =
⎛⎜⎝
−r −s −t

−u −v −w

−x −y −z

⎞⎟⎠ . (6.2)

Lemma 6.10. We may assume that the homomorphisms s ∶ E2 → E1 and t ∶ E3 → E1 are
both nonzero.
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Proof. Suppose for contradiction that both s and t are zero. Then the image of α in End(E1×

E2 ×E3) is
Q2 =

⎛⎜⎝
−rr∨ 0 0
0 −vv∨ −ww∨ vw +wz

0 −w∨v − zw∨ −w∨w − zz∨

⎞⎟⎠ .
For i = 2,3, let ψi ∶ E1 → Ei be an isogeny of degree δi. As seen in (6.1), the ψi induce an
injective Q-algebra homomorphism End0(E1×E2×E3)→ End0(E1×E1×E1) =M3(End0E1)
sending Q2 to

S =
⎛⎜⎝
−rr∨ 0 0
0 −vv∨ −ww∨ δ−12 ψ

∨
2 (vw +wz)ψ3

0 δ−13 ψ
∨
3 (−w∨v − zw∨)ψ2 −w∨w − zz∨

⎞⎟⎠ .
Since (vw + wz)∨ = −w∨v − zw∨, the entries of S commute and therefore form a subfield
L of End0E1. Since S is the image of α under an injective Q-algebra homomorphism, the
minimal polynomial of S over L divides the minimal polynomial of α over Q. Recall that
rr∨ ∈ Z is the degree of r. Now −rr∨ is an eigenvalue of S and therefore a root of its minimal
polynomial. But this means that the minimal polynomial of α over Q has a root in Z,
contradicting its irreducibility.

Therefore, at least one of s, t is nonzero. Using E2 in place of E1, we see that at least one
of s,w is nonzero. Using E3 in place of E1, we see that at least one of t,w is nonzero. Putting
all these conditions together and reordering the elliptic curves E1,E2,E3 if necessary, we may
assume that s and t are both nonzero. �

Henceforth, we assume that s and t are nonzero. Therefore, we can use s∨ and t∨ to give
an injective Q-homomorphism End0(E1 × E2 × E3) ↪ End0(E1 × E1 × E1) as in (6.1). The
image of

√
α in M3(End0E1) is

T =
⎛⎜⎝
r δ2 δ3
−1 svs∨/δ2 swt∨/δ2
−1 −tw∨s∨/δ3 tzt∨/δ3

⎞⎟⎠ , (6.3)

where δ2 = deg(s) and δ3 = deg(t).
Since K contains no imaginary quadratic subfield, Lemma 6.4 shows that the elliptic

curves E1,E2 and E3 are supersingular. By Proposition 6.6, we may choose an isomorphism
End0E1 → Bp,∞. The isomorphism sends EndE1 to a maximal order of Bp,∞ and the Rosati
involution on EndE1 corresponds to the usual involution on Bp,∞. We abuse notation slightly
by continuing to write T for the image of

√
α in M3(Bp,∞).

Lemma 6.11. Suppose that K contains no imaginary quadratic subfield. Let T denote the
image of

√
α in M3(Bp,∞). Then the entries of the matrix T do not all commute with each

other.

Proof. Suppose for contradiction that the entries of T commute. Let K1 denote the subfield
of Bp,∞ generated by the entries of T . A subfield of Bp,∞ is either Q or a quadratic subfield
which splits Bp,∞. But Bp,∞ is ramified at the infinite place, so it is not split by any real
field. Thus, K1 is either Q or an imaginary quadratic field. By assumption, K contains
no imaginary quadratic subfield. Thus, the minimal polynomial of

√
α over Q remains

irreducible over K1.
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Let g denote the minimal polynomial of T over K1. The degree of g is at most 3. Since
T is the image of

√
α under an injective Q-algebra homomorphism, g divides the minimal

polynomial of
√
α over Q, which has degree 6. Thus, the minimal polynomial of

√
α over Q

factorizes over K1, giving the required contradiction. �

We restrict to the case where p is odd; the case p = 2 is very similar. By Proposition 6.6,
Bp,∞ has a Q-basis 1, i, j, k where i2 = −ε, j2 = −p , ij = k, ji = −ij and ε is as in Proposition
6.6. We embed Bp,∞ into M4(Q) via

1↦

⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
, i ↦

⎛⎜⎜⎜⎝

0 −ε 0 0
1 0 0 0
0 0 0 −ε
0 0 1 0

⎞⎟⎟⎟⎠
, j ↦

⎛⎜⎜⎜⎝

0 0 −p 0
0 0 0 p

1 0 0 0
0 −1 0 0

⎞⎟⎟⎟⎠
, k ↦

⎛⎜⎜⎜⎝

0 0 0 −εp

0 0 −p 0
0 ε 0 0
1 0 0 0

⎞⎟⎟⎟⎠
.

This induces an embedding M3(Bp,∞) ↪M12(Q). Let U denote the image of α in M12(Q).
Write Tr(T 2) for the sum of the elements on the diagonal of T 2. Define Tr(Q2) in the
same way. It is easily checked that Tr(T 2) = Tr(Q2). By the construction of the embedding
Bp,∞ ↪M4(Q), we have

Tr(U) = 4Tr(T 2). (6.4)

Lemma 6.12. Let T denote the image of
√
α in M3(Bp,∞). Then Tr(T 2) = TrK+/Q(α).

Proof. Let α = α1, α2, α3 denote the conjugates of α. The characteristic polynomial of U is(X − α1)m1(X − α2)m2(X − α3)m3 for some m1,m2,m3 ∈ Z>0 with m1 +m2 +m3 = 12. The
trace of U is m1α1 +m2α2 +m3α3 ∈ Q. If we can show that m1 =m2 =m3 = 4, then equation
(6.4) gives

4Tr(T 2) = Tr(U) =m1α1 +m2α2 +m3α3 = 4(α1 + α2 + α3) = 4TrK+/Q(α). (6.5)

Therefore, it is enough to show that m1 =m2 =m3. Since α ∈ OK+, we have α1 + α2 + α3 ∈ Z
and therefore (m2 −m1)α2 + (m3 −m1)α3 ∈ Q. Suppose for contradiction that we are not in
the case m1 = m2 = m3. Then, without loss of generality, (m2 −m1) ≠ 0 and since α2 ∉ Q it
follows that (m3 −m1) ≠ 0. Therefore, α3 = λα2 for some λ ∈ Q. But α3 is a Galois conjugate
of α2 and the Galois group of the Galois closure of K+/Q is either C3 or S3. Therefore, the
automorphism sending α2 to α3 has order dividing 6 and hence λ is a sixth root of unity
in Q. Therefore, λ = −1 and α3 = −α2. But this gives TrK+/Q(α) = α1 + α2 + α3 = α1. So
α = α1 = TrK+/Q(α) ∈ Q, which is a contradiction. �

Proof of Theorem 6.9. Suppose for contradiction that p > 4TrK+/Q(α)6/36. We will show
that the entries of the matrix T commute, contradicting Lemma 6.11. The key ingredients
will be Lemma 6.7 (which states that elements of a maximal order whose reduced norms are
smaller than

√
p/2 commute) and equation (6.7) below.

Recall that

T =
⎛⎜⎝
r δ2 δ3
−1 svs∨/δ2 swt∨/δ2
−1 −tw∨s∨/δ3 tzt∨/δ3

⎞⎟⎠ (6.6)

where δ2 = deg(s) and δ3 = deg(t). We have

⎛⎜⎝
1 0 0
0 δ2 0
0 0 δ3

⎞⎟⎠T ∈M3(EndE1).
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We have chosen an isomorphism End0E1 → Bp,∞, sending EndE1 to a maximal order of
Bp,∞. The dual on EndE1 corresponds to the usual involution on Bp,∞. We identify End0E1

with Bp,∞ and write Nrd(f) = deg(f) = ff∨ for f ∈ EndE1.
By Lemma 6.12, we have Tr(T 2) = TrK+/Q(α). Writing out the entries on the diagonal of

T 2 gives

0 < deg(r) + 2deg(s) + 2deg(t) + deg(v) + 2deg(w) + deg(z) = −TrK+/Q(α) < 3 6

√
p/4. (6.7)

Note that the sum of degrees is a sum of non-negative integers. We want to use (6.7) to

bound the reduced norms of the non-scalar entries of
⎛⎜⎝
1 0 0
0 δ2 0
0 0 δ3

⎞⎟⎠T. Recall that, in light of

Lemma 6.10, we are assuming that s and t are nonzero. Therefore, deg(s),deg(t) ≥ 1 and
(6.7) gives

i) Nrd(r) = deg(r) < 3 6

√
p/4 − 4 <√p/2,

ii) 2deg(s) + deg(v) < 3 6

√
p/4,

iii) 2(deg(s) + deg(t) + deg(w)) < 3 6

√
p/4,

iv) 2deg(t) + deg(z) < 3 6

√
p/4.

Observe that Nrd(swt∨) = deg(s)deg(w)deg(t) = Nrd(−tw∨s∨). So it remains to bound
the reduced norms of svs∨, swt∨ and tzt∨. Let a ∈ R>0. The maximum of the function
f(x) = x2(a − 2x) for x ≥ 0 is achieved at x = a/3 and we have f(a/3) = (a/3)3. Applying

this to ii) with a = 3 6

√
p/4, we see that

Nrd(svs∨) = deg(s)2 deg(v) < ( 6

√
p/4)3 =√p/2.

Similarly, using iv) we get

Nrd(tzt∨) = deg(t)2 deg(z) < ( 6

√
p/4)3 =√p/2.

Using iii), we get

Nrd(swt∨) = deg(s)deg(w)deg(t) ≤ (deg(s) + deg(w))22deg(t) < ( 6

√
p/4)3 =√p/2.

Therefore, by Lemma 6.7, the entries of
⎛⎜⎝
1 0 0
0 δ2 0
0 0 δ3

⎞⎟⎠T commute. Since the entries of

⎛⎜⎝
1 0 0
0 δ2 0
0 0 δ3

⎞⎟⎠T are just scalar multiples of the entries of T , this means that the entries of T

commute. But this contradicts Lemma 6.11. Therefore, the assumption p > 4TrK+/Q(α)6/36
does not hold. �

6.4. Solutions to the embedding problem in the case that K contains an imaginary

quadratic subfield. In this section, we consider the case where the sextic CM-field K

contains an imaginary quadratic subfield K1. We show that the embedding problem 6.3 has
solutions for every prime p (Corollary 6.15). The solutions are constructed via the reduction
at p of a CM-abelian variety A = E3 in characteristic zero, where E is an elliptic curve. In
particular, the CM-type of A is imprimitive (Theorem 3.2). The solutions we construct may
therefore be called degenerate solutions to the embedding problem.
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The point is that if K is a CM-field which contains an imaginary quadratic subfield then
there always exist imprimitive CM-types for K. This is what allows for the existence of
degenerate solutions to the embedding problem. Recall from Corollary 3.4 that there do not
exist imprimitive CM-types (K,ϕ) for CM-fields that do not contain a proper CM-subfield.

The proof of Theorem 6.8 relied on showing non-existence of solutions of the embedding
problem for sufficiently large primes (Theorem 6.9) in the case where the sextic CM-field
contains no proper CM-subfield. In contrast, if C is a curve whose Jacobian has CM by a sex-
tic CM-field K which contains an imaginary quadratic field, then this strategy breaks down
because there the embedding problem has degenerate solutions for all primes p (Corollary
6.15). The embedding problem, as formulated in Problem 6.3, does not take the CM-type
into consideration. It may be possible to prove an analogous result to Theorem 6.8, in
the case that K contains a proper CM-subfield, using a more refined formulation of the
embedding problem that includes the CM-type as part of the data.

Proposition 6.13. Let K be a sextic CM-field containing a proper CM subfield K1. Let
E be an elliptic curve over an arbitrary field and suppose that there exists an embedding
K1 ↪ End0(E). Then there exists an order O of K and a ring embedding

O ↪ End(E3) =M3(End(E))
such that the Rosati involution on End(E3) corresponding to the product polarization on
A = E3 induces complex conjugation on O.
Proof. It suffices to give an injective Q-algebra homomorphism

K ↪ End0(E3) =M3(End0(E)). (6.8)

This can be achieved as follows. Write K = K+K1 where K+/Q is a totally real field with[K+ ∶ Q] = 3. Choose a primitive element α of K+/Q, so K+ = Q(α). Embed K1 diagonally
via the fixed embedding ofK1 into End

0(E). Map α to a symmetric matrix Q ∈M3(Q) which
has the same minimal polynomial as α. Since all the conjugates of α are real, the existence of
the matrix Q is proved in Theorem 4 of [Ben68]. Extend to a Q-algebra homomorphism. �

In Remark 5.6, we reviewed the construction in characteristic 0 of genus 3 curves with
CM by a sextic CM-field K. Similarly, when K1 is an imaginary quadratic field, elliptic
curves with CM by K1 exist in characteristic zero. For example, we may take E = C/OK1

,
where we consider the maximal order OK1

of K1 as lattice in C ([Sil94], Remark II.4.1.1).
Then End(E) = OK1

. Moreover, j(E) is an algebraic integer ([Sil94], Theorem II.6.1). (This
can be deduced from Theorem 4.1 which states that E has potentially good reduction.) In
particular, E can be defined over the number field M ∶= Q(j(E)).

We now show the existence of elliptic curves with CM by K1 in positive characteristic.
As above, E/M is an elliptic curve defined over the number field M with End(E) = OK1

.
We choose a rational prime p, and let p be a prime of M above p. After extending M if
necessary, we may assume that E has good reduction at p. Write Ep for the reduction of E
at p. We obtain an embedding

OK1
= End(E)↪ End(Ep).

This proves the following lemma.

Lemma 6.14. Let p be a prime. Then there exists an elliptic curve Ep in characteristic p

with OK1
↪ End(Ep).
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The following result follows immediately from Lemma 6.14 and Proposition 6.13.

Corollary 6.15. Let K be a sextic CM-field containing an imaginary quadratic field K1.
Then there exists an order O of K for which there exists a solution to the embedding problem
for O and p for every prime number p.

Corollary 6.15 does not specify whether the elliptic curve Ep from Lemma 6.14 is ordinary
or supersingular. The following proposition answers this question. Note that it follows that
the set of primes where the elliptic curve Ep is supersingular has Dirichlet density 1/2.
Proposition 6.16. (Deuring’s Theorem) Let E/M be an elliptic curve with CM by OK1

.
Let p be a rational prime and p be a prime of M above p such that E has good reduction at
p. Then the reduction Ep of E at p is supersingular if and only if p is inert or ramified in
K1.

Proposition 6.16 is well known, but hard to find explicitly in the literature. The statement
can be proved using Theorem 10 of Section 10.4 of [Lan87]. We give the idea of the proof of
the proposition. Let E/Fq be an elliptic curve. Write π for its q-Frobenius endomorphism.

Then E is supersingular if and only if there exists integers n,m such that πn = [p]m, where[p] denotes multiplication by p. (See for example the proof of the Theorem of Deuring in
Section 22 of [Mum70]). The theorem from [Lan87] shows that this happens if and only if p
is inert or ramified in K1.

Appendix A. Equations

In this section, we list the equations obtained from a possible solution to the embedding
problem. We start by setting some notation.

Let K+ be the maximal real subfield of the sextic CM-field K = K+(η). Take an integral
basis of OK+, so OK+ = α1Z ⊕ α2Z ⊕ α3Z. We may assume that K+ = Q(α1). We fix the
following notation:

● TrK/K+(η) = a1α1 + a2α2 + a3α3

● NmK/K+(η) = b1α1 + b2α2 + b3α3

● fi(x) = x3 +mix2 +nix+ si is the characteristic polynomial of αi over Q for i = 1,2,3.
A solution to the embedding problem (Problem 6.3) gives us three elliptic curves E1,E2,E3

and an embedding of ι ∶ OK ↪ End(E1×E2 ×E3) such that Rosati involution on E1 ×E2×E3

restricts to complex conjugation in the image of OK . This gives the following conditions on
ι(αi) and ι(η):

(1) Commutativity:
(a) ι(αi)ι(η) = ι(η)ι(αi) for all i = 1,2,3.
(b) ι(αi)ι(αj) = ι(αj)ι(αi) for all i ≠ j ∈ {1,2,3}.

(2) Characteristic polynomial: fi(ι(αi)) = 0 for all i = 1,2,3.
(3) Norm: ι(η)ι(η)† = b1ι(α1)+b2ι(α2)+b3ι(α3), where † denotes the conjugate transpose.
(4) Trace: ι(η) + ι(η)† = a1ι(α1) + a2ι(α2) + a3ι(α3).
(5) Duality/Complex conjugation: ι(αi) = ι(αi)† for all i = 1,2,3. Since we are interested

in the case that Rosati involution induces complex multiplication and since η can be
chosen so that η2 ∈K+ is totally negative, we have ι(η)† = −ι(η).

In the rest of this appendix, we will only write the conditions for i = 1 which is enough if
we have a power basis. In any case, the other relations for i = 2,3 are similar. We now write
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the conditions above in terms of matrix coefficients. We are using the conventions and maps
introduced in Section 6.2.

Let M = ι(α1) be the matrix
⎛⎜⎝
a b c

d e f

g h ℓ

⎞⎟⎠ and N = ι(η) be the matrix
⎛⎜⎝
p q r

s t u

v w y

⎞⎟⎠ .

A.0.1. Equations for duality/complex conjugation condition. The relation ι(η)† = −ι(η) trans-
lates into M =M∨ i.e.,

⎛⎜⎝
a b c

d e f

g h ℓ

⎞⎟⎠ =
⎛⎜⎝
a∨ d∨ g∨

b∨ e∨ h∨

c∨ f∨ ℓ∨

⎞⎟⎠ .
This gives us the following relations.

Remark A.1. Note that we name the relations with respect to the variables we intend to
use later on. Our aim is to simplify the equations and write everything in terms of the upper
triangular entries of our matrices which are a, b, c, e, f, ℓ in the case of M and p, q, r, t, u, y in
the case of N .

(b-d) d = b∨
(c-g) g = c∨
(f-h) h = f∨
(int) a, e, ℓ are integral and in Q, hence they are integers.

The relation ι(η)∨ = −ι(η) translates into: ⎛⎜⎝
p q r

s t u

v w y

⎞⎟⎠ =
⎛⎜⎝
−p∨ −s∨ −v∨

−q∨ −t∨ −w∨

−r∨ −u∨ −y∨

⎞⎟⎠ .
This gives us the following relations:

(q-s) s = −q∨
(r-v) v = −r∨
(u-w) w = −u∨

(trace) p = −p∨, t = −t∨, and y = −y∨
i.e., p, t, and y have trace zero in End(E1), End(E2), and End(E3) respectively.

A.0.2. Equations for commutativity condition. Using M and N as above, the condition
means MN = NM which translates into the following equations:

(i-i) ap+ bs+ cv = pa+ qd+ rg. (By equation (int) in Section A.0.1, a is an integer. Hence
ap = pa and bs + cv = qd + rg.)

(i-ii) aq + bt + cw = pb + qe + rh
(i-iii) ar + bu + cy = pc + qf + rℓ
(ii-i) dp + es + fv = sa + td + ug
(ii-ii) dq + et + fw = sb + te + uh (By equation (int) in Section A.0.1, e is an integer. Hence

et = te and dq + fw = sb + uh.)
(ii-iii) dr + eu + fy = sc + tf + uℓ
(iii-i) gp + hs + ℓv = va +wd + yg
(iii-ii) gq + ht + ℓw = vb +we + yh
(iii-iii) gr + hu+ ℓy = vc+wf + yℓ (By equation (int) in Section A.0.1, ℓ is an integer. Hence

ℓy = yℓ and gr + hu = vc +wf .)
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A.0.3. Combining duality and commutativity conditions. Now we will plug in the equations
we obtained in Section A.0.1 into the equations we obtained in Section A.0.2. Note that our
aim is to simplify the equations and write everything in terms of the upper triangular entries
of our matrices which are a, b, c, e, f, ℓ in the case of M and p, q, r, t, u, y in the case of N .

Relation Obtained using:

bq∨ + cr∨ + rc∨ + qb∨ = 0 (i-i), (c-g), (q-s), (v-r)
pb + qe + rf∨ − aq − bt + cu∨ = 0 (i-ii), (u-w), (f-h)
ar + bu + cy − pc − qf − rℓ = 0 (i-iii)

b∨p − eq∨ − fr∨ + q∨a − tb∨ − uc∨ = 0 (ii-i), (b-d), (q-s), (r-v), (q-s)
b∨q − fu∨ + q∨b − uf∨ = 0 (ii-ii), (b-d), (u-w), (q-s), (f-h)

dr + eu + fy + q∨c − tf − uℓ = 0 (ii-iii), (q-s)
c∨p − f∨q∨ + (a − ℓ)r∨ + u∨b − yc∨ = 0 (iii-i), (c-g), (f-h), (s-q), (r-v), (u-w), (b-d), (int)
c∨q + f∨t + (e − ℓ)u∨ + r∨b − yf∨ = 0 (iii-i), (c-g), (f-h), (u-w), (r-v), (int)

c∨r + f∨u + r∨c + u∨f = 0 (iii-i), (f-h), (u-w), (r-v)

A.0.4. Equations for characteristic polynomial condition. The characteristic polynomial con-
dition for i = 1 translates into 0 = M3

+m1M2
+ n1M + s1. Combining this equality with

Equation (int) of Section A.0.2 gives the following equations. For instance, for the top left
corner of the matrix sum we get

0 = a3 + abd + acg + bda + bed + bfg + cga + chd + cℓg +m1(a2 + bd + cg) + n1a + s1.

If we apply Condition (int) this turns into

(2a + e +m1)bd + (2a + ℓ +m1)cg + bfg + chd + a3 +m1a
2
+ n1a + s1 = 0.

The following is the list of equations coming from all nine entries.

(i) (2a + e +m1)bd + (2a + ℓ +m1)cg + bfg + chd + a3 +m1a2 + n1a + s1 = 0
(ii) (a2 + ae + e2 +m1a +m1e + n1)b + (e + ℓ +m1 + a)ch + bdb + bfh + cgb = 0
(iii) (a2 + aℓ + ℓ2 +m1a +m1ℓ + n1)c + (a + e + ℓ +m1)bf + bdc + cgc + chf = 0
(iv) (a2 + ea + e2 +m1a +m1e + n1)d + (e + a + ℓ +m1)fg + dbd + dcg + fhd = 0
(v) (a + 2e +m1)db + (2e + ℓ +m1)fh + dch + fgb + e3 +m1e2 + n1 + s1 = 0
(vi) (a + ℓ + e +m1)dc + (e2 + eℓ + ℓ2 +m1e +m1ℓ + n1)f + dbf + fgc + fhf = 0
(vii) (a2 + ℓa + ℓ2 +m1a +m1ℓ + n1)g + (a + e + ℓ +m1)hd + gbd + gcg + hfg = 0
(viii) (e2 + ℓe + ℓ2 +m1e +m1ℓ + n1)h + (a + e + ℓ +m1)gb + gch + hdb + hfh = 0
(ix) (a + 2ℓ +m1)gc + (e + 2ℓ +m1)hf + gbf + hdc + ℓ3 +m1ℓ2 + n1ℓ + s1 = 0

A.0.5. Combining duality and characteristic polynomial conditions. Now we will plug in the
equations we obtained in Section A.0.1 into the equations we obtained in Section A.0.4.
Note that our aim is to simplify the equations and write everything in terms of the upper
triangular entries of our matrices which are a, b, c, e, f, ℓ in the case of M and p, q, r, t, u, y in
the case of N . Note that Nrd(x) = xx∨,Tr(x) = x + x∨ denote the reduced norm and trace
of an element. Since the norm and trace are scalars, they commute with everything else.

We start with the relations coming from M :

(I) (2a + e +m1)Nrd(b) + (2a + ℓ +m1)Nrd(c) +Tr(bfc∨) + a3 +m1a2 + n1a + s1 = 0
(II) (a2 + ae + e2 +m1a +m1e + n1 +Nrd(b) +Nrd(c) +Nrd(f))b + (a + e + ℓ +m1)cf∨ = 0
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(III) (a2 + aℓ + ℓ2 +m1a +m1ℓ + n1 +Nrd(b) +Nrd(c) +Nrd(f))c + (a + e + ℓ +m1)bf = 0
(IV) (a2 + ae + e2 +m1a +m1e + n1 +Nrd(b) +Nrd(c) +Nrd(f))b∨ + (a + e + ℓ +m1)fc∨ = 0
(V) (a + 2e +m1)Nrd(b) + (2e + ℓ +m1)Nrd(f) +Tr(b∨cf∨) + e3 +m1e2 + n1e + s1 = 0
(VI) (e2 + eℓ + ℓ2 +m1e +m1ℓ + n1 +Nrd(b) +Nrd(c) +Nrd(f))f + (a + ℓ + e +m1)b∨c = 0
(VII) (a2 + aℓ+ ℓ2 +m1a +m1ℓ+n1 +Nrd(b)+Nrd(c) +Nrd(f))c∨ + (a + e+ ℓ+m1)f∨b∨ = 0
(VIII) (e2 + eℓ + ℓ2 +m1e +m1ℓ + n1 +Nrd(b) +Nrd(c) +Nrd(f))f∨ + (a + e + ℓ +m1)c∨b = 0
(IX) (a + 2ℓ +m1)Nrd(c) + (e + 2ℓ +m1)Nrd(f) +Tr(c∨bf) + ℓ3 +m1ℓ2 + n1ℓ + s1 = 0
Write Tr(X) for the sum of the entries on the main diagonal of a matrix X . Notice that

if we take η =√α1 like in Section 6.3, then

−m1 = Tr(α1) = Tr(N2) = Tr(M) = a + e + ℓ,
where the first equality follows by definition, the second equality is Lemma 6.12, the third
equality holds because we took η = √α1, and the final equality is the definition of Tr(M).
This implies that Equation (II) = Equation (IV), Equation (III)= Equation (VII) and Equa-
tion (VI)=Equation (VIII).

Combining −m1 = a+e+ ℓ with relations (I)-(IX), we deduce the following relations on the
coefficients m1, n1, s1 of the characteristic polynomial of α1.

(1) m1 = −(a + e + ℓ)
(2) n1 = ae+eℓ+aℓ−Nrd(b)−Nrd(c)−Nrd(f) (using Equation (1) together with Equations

(II), (III) and (VI).)
(3) s1 = aNrd(f)+eNrd(c)+ lNrd(b)−aeℓ−Tr(bfc∨) (using Equation (1) together with

Equations (I), (V) and (IX).)
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